For questions regarding your VIP team's operations this Fall, please see our VIP policy for Fall 2020 and Notes from instructors on delivery modes. For information on returning to campus, please visit GA Tech's Moving Foward page.

Teams

Results per page

Pages

Filter
  • To discover physical principles of how animals move in complex, challenging environments. Use tools from physics, neuroscience, biomechanics, and robotics to extract mechanism of how animal and engineered systems move, especially with respect to stability, agility, and robustness.

  • To examine how small, low cost unmanned aerial vehicles can be used to deliver items, operate in constrained environments, and maximize efficiency.  To achieve this, we will develop electromechanical designs, avionics, and algorithms for small, low cost, aerial vehicles.  We will first focus on developing gliding vehicles that are catapult launched.  Once the platforms are...

  • NASA, Georgia Tech, and GTRI are developing energy technologies to support future missions to Mars. The VIP M.A.R.S. Team will research, develop, and test renewable energy systems in collaboration with scientists and engineers at NASA’s Kennedy Space Center in Florida. The Moon and Mars offer difficult challenges to NASA’s ambitious plan for exploration, including acquisition of reliable and...

  • On January 29, 2018, the ten million acre Patagonia National Park system was born. The goal of this VIP project is to develop and execute a Strategic Sustainability Plan for this new park in collaboration with the Chilean government, US philanthropic organizations, and Yellowstone National Park. Themes include water and energy, transportation, education and communication, waste management,...

  • To develop the data and decision science to improve mobility and accessibility in Atlanta.

  • Modern electronic devices are powerful but uninspiring; they are ubiquitous but ephemeral. We will design and fabricate devices for music production, gaming, and computing sparked by real-world designs from the past as well as fictional formulations of imagined futures. The black-and-white, utilitarian minimalism of modern laptops and cell phones that blight the aisles of Best Buy with boredom...

  • To develop robotic sensing platforms for environmental and other monitoring tasks such as oil spill surveys, environmental clean-ups, etc. To develop autonomy solutions for airborne, maritime, and other mobile sensing networks.

  • The EPIC (Exoskeleton and Prosthesis Intelligent Controls) Lab research areas include automation & mechatronics and bioengineering with a focus on the control of powered robotic prostheses and exoskeletons to assist human movement. We implement biological signal processing, intent recognition, and control systems based on EMG and mechanical sensors to improve human-machine capabilities....

  • Develop creative robots that can listen to, play, and improvise music.

  • To produce novel, creative media about recent scientific discoveries and engineering innovations. These include but are not limited to: interactive museum-style exhibitions, online articles and videos, and festival exhibits. Specifically, the team will create one exhibit or demo per semester, and each team member will publish bi-weekly in the online science magazine Charged. ...

  • To design digital hardware which is highly resistant to: (i) reverse engineering and (ii) attack by malicious hardware insertions (hardware Trojans).  

  • To develop smart city infrastructure health condition monitoring, detection, and diagnosis with the use of emerging technologies (e.g. smart phones, 2D imaging, 3D laser, LiDAR, UAV, GPS/GIS, crowdsourcing, voice recognition, etc.) with artificial intelligence, machine learning, computer vision, pattern recognition, signal processing, multi-source/scale/frequency/resolution data fusion, and...

  • To study soft, biocompatible materials to design low-profile, unobtrusive wearable and implantable electronics for advancing human healthcare and wellness.

  • Development of an intelligent system to manage and maintain makerspaces.

  • The built environment plays a fundamental role in hour daily life. It impacts our health, performance, stress levels, social relations, and even the contagion of COVID-19. This project explores expanding the Building Performance Analytics towards a dynamic spatiotemporal framework, studying the characteristics of spaces combined with human activities and organizational processes that...

  • Create, fabricate, and flight test unmanned air vehicles intended for a special purpose or technology demonstration.

  • Design and deploy smartphone apps/games, websites, wireless networks, and sensor networks to gather and deliver game and venue information to football fans in the stadium on gameday.

  • Energy has become one of the world's biggest engineering challenges. Current carbon-based energy supply faces conventional reserves depletion and climatic hurdles. The goal of this project is to address enhanced subsurface energy recovery and associated environmental mitigation from a geoengineering perspective. The team will study fundamental hydro-thermo-chemo-bio-mechanical properties of...

  • The Student Cluster Competition team will focus on putting together a proposal each Spring to compete in Supercomputing’s “Student Cluster Competition”. This competition brings togethers teams from around the world to complete a series of challenges related to high-performance computing within a set time limit and power budget...

  • To develop human guided robotic technologies that enhance/facilitate the work at construction sites. The goal is to design semi-autonomous robots that construction workers could control to execute the initial construction phases of a building, such as digging (earth-forming) and foundation construction. By exploring and integrating technologies such as embedded computing for automation,...

Pages