For questions regarding your VIP team's operations this Fall, please see our VIP policy for Fall 2020 and Notes from instructors on delivery modes. For information on returning to campus, please visit GA Tech's Moving Foward page.

Teams

Results per page
Filter
  • To develop 2-D to 2-D tunneling structures to enable for smaller, faster, more capable microelectronic devices applied to a broad range of applications such as energy, RF, and sensing.

  • Using artificial intelligence (AI)-based approaches (especially manifold learning) for understanding the delicate rules of nature and utilizing them for forming innovative software- and hardware-based tools for addressing the major challenges in a wide range of disciplines. ...

  • The Laboratory for Intelligent Decision and Autonomous Robots (LIDAR) at Georgia Tech focus on planning, control, and decision-making algorithms of highly dynamic, under-actuated, and human-cooperative robots in complex environments. The VIP Team will explore the challenging research topics in mechanical design, mechatronics, control algorithm design, and perception of dynamic legged...

  • This project, a collaboration between Mark Leibert (LMC) and Betty Whitaker (GTRI), brings together histories and concepts of visual culture and image making with explorations of technology and artificial intelligence. We are an artist and AI researcher exploring approaches to applying machine learning to create artistic images. Our team is analyzing the application of machine learning to...

  • **Limited Admissions for the Spring 2021 Semester** Leverage advances in machine learning and data analytics to enable faster and more accurate calculations of chemical properties using quantum-mechanical techniques such as density functional theory (DFT).

  • To create autonomous microrobots that can traverse biological barriers within the body by mimicking microorganisms.

  • This team focuses on the effects that data are having in shaping education, on how new, rich, educational data sources can be used to improve content, instruction, and learning. Specifically, we look to the vast array of data that can be collected around educational opportunities at Georgia Tech and how those data shape educational practice.

  • To discover how evolution acts on materials properties in microbial systems. Use experiments,  simulations, and analytical theory to elucidate how biological fitness and function emerge from physical principles.

  • There is a need for the development of new techniques to aide in the conservation of wildlife to prevent extinction and the decrease of biodiversity. Examples of such techniques include the use of drones to mitigate rhino poaching or low-cost equipment that can deter elephants...

  • To discover physical principles of how animals move in complex, challenging environments. Use tools from physics, neuroscience, biomechanics, and robotics to extract mechanism of how animal and engineered systems move, especially with respect to stability, agility, and robustness.

  • Develop creative robots that can listen to, play, and improvise music.

  • To produce novel, creative media about recent scientific discoveries and engineering innovations. These include but are not limited to: interactive museum-style exhibitions, online articles and videos, and festival exhibits. Specifically, the team will create one exhibit or demo per semester, and each team member will publish bi-weekly in the online science magazine Charged. ...

  • This concept builds on a broader notion of psychological resilience or positive adaptation to adverse situations.