For questions regarding your VIP team's operations this Fall, please see our VIP policy for Fall 2020 and Notes from instructors on delivery modes. For information on returning to campus, please visit GA Tech's Moving Foward page.

Teams

Results per page
Filter
  • To develop 2-D to 2-D tunneling structures to enable for smaller, faster, more capable microelectronic devices applied to a broad range of applications such as energy, RF, and sensing.

  • Aquabots will explore new research in maritime robotics including navigation of underwater and surface vehicles, mapping and exploration underwater, and other challenging maritime robotic technologies.

  • GOALS: To collect and analyze big data about bee-flower interactions on the Georgia Tech campus and beyond to inform property owners and policy makers about how land use can support pollinator health.

  • Model crack propagation, crack networks, particle crushing, and healing in salt rock; predict soil and rock THCM behavior during heat and fluid injection and extraction; design new geomaterials to optimize the fuel cycle; and recommend strategies for resource and waste management.

  • To create autonomous microrobots that can traverse biological barriers within the body by mimicking microorganisms.

  • Goals: To build a suite of mobile applications for iOS and Android devices that will be used to administer and collect data from individuals who have suffered brain traumas with lingering effects (e.g., stroke leading to Aphasia, Alzheimer’s, etc.).

  • Despite decades of efforts there has been little progress in recruiting a US National Park Service workforce that reflects the increasingly diverse and multi-cultural American public. This VIP aims to establish a GT Public Innovation Center (PIC) as a means to increase the diversity and career opportunities with the National Park Service and other federal agencies, starting with Yellowstone....

  • This team will return Fall 2021 ...

  • To discover how evolution acts on materials properties in microbial systems. Use experiments,  simulations, and analytical theory to elucidate how biological fitness and function emerge from physical principles.

  • We are currently developing a drone delivery system that could be used to deliver small packages on Georgia Tech campus. Assembly of the drone and implementation of package pickup mechanism are nearly complete. Flight testing will begin soon. Upcoming tasks include development of consumer delivery app, construction of delivery station prototype, planning and performance of flight testing,...

  • There is a need for the development of new techniques to aide in the conservation of wildlife to prevent extinction and the decrease of biodiversity. Examples of such techniques include the use of drones to mitigate rhino poaching or low-cost equipment that can deter elephants...

  • To improve health outcomes, nutrition, and general living conditions in developing nations and resource-limited environments through a variety of key technologies. These solutions include: sensors for sanitation in challenging environments, improving access to...

  • The purpose of the Living Building Science team is to evaluate the impact of the Kendeda Building for Innovative Sustainable Design on the non-human living and nonliving environment using sustainable scientific methods.

  • To discover physical principles of how animals move in complex, challenging environments. Use tools from physics, neuroscience, biomechanics, and robotics to extract mechanism of how animal and engineered systems move, especially with respect to stability, agility, and robustness.

  • NASA, Georgia Tech, and GTRI are developing energy technologies to support future missions to Mars. The VIP M.A.R.S. Team will research, develop, and test renewable energy systems in collaboration with scientists and engineers at NASA’s Kennedy Space Center in Florida. The Moon and Mars offer difficult challenges to NASA’s ambitious plan for exploration, including acquisition of reliable and...

  • On January 29, 2018, the ten million acre Patagonia National Park system was born. The goal of this VIP project is to develop and execute a Strategic Sustainability Plan for this new park in collaboration with the Chilean government, US philanthropic organizations, and Yellowstone National Park. Themes include water and energy, transportation, education and communication, waste management,...

  • To produce novel, creative media about recent scientific discoveries and engineering innovations. These include but are not limited to: interactive museum-style exhibitions, online articles and videos, and festival exhibits. Specifically, the team will create one exhibit or demo per semester, and each team member will publish bi-weekly in the online science magazine Charged. ...

  • Energy has become one of the world's biggest engineering challenges. Current carbon-based energy supply faces conventional reserves depletion and climatic hurdles. The goal of this project is to address enhanced subsurface energy recovery and associated environmental mitigation from a geoengineering perspective. The team will study fundamental hydro-thermo-chemo-bio-mechanical properties of...

  • This concept builds on a broader notion of psychological resilience or positive adaptation to adverse situations.