For questions regarding your VIP team's operations this Fall, please see our VIP policy for Fall 2020 and Notes from instructors on delivery modes. For information on returning to campus, please visit GA Tech's Moving Foward page.

Teams

Results per page

Pages

Filter
  • For students to learn the theory and gain the skills necessary to fabricate next-generation batteries for EVs, spacecraft, and Smart Cities infrastructure.

  • Future wireless communication devices will need to dynamically learn their environment and opportunistically exploit spectrum. The goal of this project is to integrate machine learning algorithms into communication architectures to achieve the agility required for the task. The team will participate to the DARPA Spectrum Collaboration Challenge (SC2) and test its solutions against other...

  • This project, a collaboration between Mark Leibert (LMC) and Betty Whitaker (GTRI), brings together histories and concepts of visual culture and image making with explorations of technology and artificial intelligence. We are an artist and AI researcher exploring approaches to applying machine learning to create artistic images. Our team is analyzing the application of machine learning to...

  • Enable the creation of augmented-reality applications and experiences using a wide range of delivery platforms and AR technologies. Current projects use Argon, an augmented reality software suite developed at Georgia Tech that is both a Javascript/HTML5 framework and a set of browsers and tools.

  • The Bits of Good VIP team is closely linked to the Bits of Good student organization. In order to participate in the VIP, you will need to be a member of the BoG student organization, as this is where teams, roles, and training will take place. As a member of VIP, you will have some additional responsibilities to support the assignment of individual grades for the VIP. These may include:...

  • This VIP takes as its main focus Georgia Tech’s new Living Building – the Kendeda Building for Innovative Sustainable Design – and its efforts to advance social equity as a key part of building and operating a sustainable building. Within the Living Building Challenge (LBC), we focus on improving - and re-defining - the

  • At Georgia Tech, we live in an incubator for problem solving, scientific inquiry, and technological innovation, but the public at large is surprisingly ignorant about the STEM disciplines. We will build the Georgia Tech Mobile STEM Laboratory - a sustainable and continually growing infrastructure we’ll use to measurably impact this ignorance regionally and nationally. Ultimately, we’ll have...

  • To design, build, defend, and race an open-wheel formula-style vehicle in the annual Formula SAE competition.

  • To design, build, defend, and race a high-performance off-road vehicle in the annual SAE BAJA competition.

  • There is a need for the development of new techniques to aide in the conservation of wildlife to prevent extinction and the decrease of biodiversity. Examples of such techniques include the use of drones to mitigate rhino poaching or low-cost equipment that can deter elephants...

  • This VIP employs the sidekick model of global social entrepreneurship to leverage market forces to accomplish 3 critical objectives.  The first is to identify superhero local leaders in the global south who have a long track record of success in transforming their communities with social innovation.  The second is to inspire the world about these largely unknown change agents and...

  • To improve health outcomes, nutrition, and general living conditions in developing nations and resource-limited environments through a variety of key technologies. These solutions include: sensors for sanitation in challenging environments, improving access to...

  • Internet of things (IOT) has the potential to revolutionize the healthcare industry. Thus far, most IOT applications focus on improving monitoring and physiological sensing of healthcare and patient care; however, the next generation of healthcare technologies will focus on multiplexed points of care testing, diagnostics, and treatment. The goal of this course is to engage students to explore...

  • NASA, Georgia Tech, and GTRI are developing energy technologies to support future missions to Mars. The VIP M.A.R.S. Team will research, develop, and test renewable energy systems in collaboration with scientists and engineers at NASA’s Kennedy Space Center in Florida. The Moon and Mars offer difficult challenges to NASA’s ambitious plan for exploration, including acquisition of reliable and...

  • Modern electronic devices are powerful but uninspiring; they are ubiquitous but ephemeral. We will design and fabricate devices for music production, gaming, and computing sparked by real-world designs from the past as well as fictional formulations of imagined futures. The black-and-white, utilitarian minimalism of modern laptops and cell phones that blight the aisles of Best Buy with boredom...

  • To produce novel, creative media about recent scientific discoveries and engineering innovations. These include but are not limited to: interactive museum-style exhibitions, online articles and videos, and festival exhibits. Specifically, the team will create one exhibit or demo per semester, and each team member will publish bi-weekly in the online science magazine Charged. ...

  • Development of an intelligent system to manage and maintain makerspaces.

  • Create, fabricate, and flight test unmanned air vehicles intended for a special purpose or technology demonstration.

  • Electronic sports, known as esports, are experiencing a meteoric rise in popularity thanks in large part to technological advances in network connectivity, game engines, online streaming platforms, and novel fan experience engagements. Over 300 million fans have streamed more than 300 million hours on the Twitch platform alone, and global viewership is now expected to exceed 400 million....

Pages