Teams

Displaying 1 - 20 of 88

Pages

  • We aim to establish an integrated, collaborative learning environment that explores cinematic filmmaking in the Unreal Engine and offers hands-on experience in film development, production, distribution, and exhibition. Our diverse project teams allow students to work alongside industry professionals to design, fundraise, write, shoot, edit, and market original content while cultivating...

  • Our team seeks to create robust, comprehensive, and transparent real-time power outage data measured at multiple geographic scales for the entire country to 1) deliver rapid emergency response and medical services, 2) inform public investments in grid resilience and restoration, and 3) identify which local communities are more socio-economically vulnerable to climate risk of energy...

  • Conventional environmental simulation approaches in urban design are time-consuming and often incompatible with the fast-paced design processes. This project aims to revolutionize this outdated paradigm by developing surrogate models that accelerate simulations, thereby offering real-time feedback to urban decision-makers, such as architects, urban designers, and policymakers. Our goal is to...

  • The human record is enormous, ranging from the text we produce on the internet today to ancient writings on clay like the cuneiform tablets. Unlike the text that is "born digital" today, much of the historical texts and their metadata remain locked up in various inscrutable archival states rendering computational analysis of these texts impossible. The goal of this project is to build an...

  • To develop 2-D to 2-D tunneling structures to enable for smaller, faster, more capable microelectronic devices applied to a broad range of applications such as energy, RF, and sensing.

  • The goal of this team is to create educational tools for nanoscale additive manufacturing (AM) based on two-photon absorption (TPA) so that high-skills nanoscale three-dimensional (3D) printing can become as prolific as hobbyist 3D printing is today. TPA-based nanoscale AM has the unique ability to use light to produce 3D structures with features as small as 100 nm. These structures have...

  • The ACT (Autonomous and Connected Transportation) Driving Simulator Team addresses problems that arise in multiple dimensions due to the emergence of autonomy, connectivity, and novel tech-leveraged modes in transportation. A major focus is to understand the interactions among drivers/travelers, emerging vehicular technologies related to connectivity and autonomy, and novel infrastructure...

  • Using artificial intelligence (AI)-based approaches (especially manifold learning) for understanding the delicate rules of nature and utilizing them for forming innovative software- and hardware-based tools for addressing the major challenges in a wide range of disciplines. ...

  • Create Ava: an intelligent, full-body, controllable human avatar that can hear/see and is capable of natural, spoken conversations with humans.

  • Finding new materials to serve as the next generation catalysts, batteries, solar cells, superconductors or electronic devices can have a potentially transformative impact on our lives and society. Here, we seek to leverage state-of-the-art machine learning methods to accelerate the process of materials discovery and design far beyond what is possible using conventional simulation and...

  • AccessCORPS will train students (and others) to systematically assess the accessibility of GT course materials, to determine any barriers a student with an impairment or disability or other challenge may face when taking the course. The AccessCORPS team members will then work with the course instructor(s) to reduce access barriers in the materials and other aspects of the course, while also...

  • To develop a system that will be able to drive like an expert human driver. In order to achieve this, we will initially monitor the driving styles of several drivers using a high-fidelity driving simulator. Based on the measurements, we will be able to classify drivers according to their skill using graphical inference models. We will then develop suitable models for drivers’ actions and...

  • For students to learn the theory and gain the skills necessary to fabricate next-generation batteries for EVs, spacecraft, and Smart Cities infrastructure.

  • Future wireless communication devices will need to dynamically learn their environment and opportunistically exploit spectrum. The goal of this project is to integrate machine learning algorithms into communication architectures to achieve the agility required for the task. The team will participate to the DARPA Spectrum Collaboration Challenge (SC2) and test its solutions against other...

  • The Laboratory for Intelligent Decision and Autonomous Robots (LIDAR) at Georgia Tech focus on planning, control, and decision-making algorithms of highly dynamic, under-actuated, and human-cooperative robots in complex environments. The VIP Team will explore the challenging research topics in mechanical design, mechatronics, control algorithm design, and perception of dynamic legged...

  • Aquabots will explore new research in maritime robotics including navigation of underwater and surface vehicles, mapping and exploration underwater, and other challenging maritime robotic technologies.

  • This project brings together histories and concepts of visual culture and image making with explorations of technology and artificial intelligence. We are an artist and AI researcher exploring approaches to applying machine learning to create artistic images. Our team is analyzing the application of machine learning to the creative act of image making. Working collaboratively in the areas of...

  • To design and instantiate autonomous mobile robots capable of performing non-trivial tasks in support of people, in life and in work. Emphasis is on task-driven autonomy and underlying algorithms needed to realize it.

  • To develop a framework that fundamentally alters the development of algorithms. We desire to create an automated method that starts with the best human algorithms and then dispassionately develops hybrid algorithms that outperform existing methods. Next, we prove that these algorithms can also be studied by humans for inspiration in development of new algorithm and optimization methods. ...

  • To develop an automotive LiDAR system in support of the emerging technical area of vehicle autonomy and increased safety.

Pages