Presentations & Publications

Presentations

About VIP

Systemic Reform of STEM Education: The Vertically Integrated Projects (VIP) Consortium

Evaluation

The Social Web of Engineering Education: Knowledge Exchange in Vertically Integrated Project Teams

Consortium Planning
Workshop Presentations

VIP @ GA Tech, VIP Overview

VIP @ Purdue

VIP @ Strathclyde

VIP Credits & Senior Design @ GA Tech

Multidisciplinary Design Program - University of Michigan

Evaluation

Intellectual Property Awareness  Jeffrey R. Kuester Presentation

Publications

Publication Abstract

Ferri, A.A. and Ferri, B.H., “Blended Learning in a Rigid-Body Dynamics Course Using On-Line Lectures and Hands-On Experiments,” 2016 ASEE Conference and Exposition, New Orleans, LA, June 26-29, 2016. Winner of Best Paper Award from the ASEE Mechanics Division.

Rigid body dynamics is a foundational course that forms the basis for much of the ME curriculum in the mechanical systems area. Under the best of circumstances, the topic is challenging, but especially so when both two-dimensional (planar) and three-dimensional rigid body dynamics are covered in the same 3-hour semester class. To address these challenges, several changes were implemented in a section of Rigid Body Dynamics in the Fall of 2014 and continuing into Spring 2015. First, in class lecturing was replaced with online videos developed for two Coursera MOOCs on dynamics. Second, various types of active learning were introduced into the classroom. Of particular concern in this paper is the inclusion of experiments into the lecture portion of the class. These experiments are described in this paper and assessment results from the two sections of dynamics are presented and discussed. It was found that the students reacted very favorably to the experiments, as seen by a comparison of pre-, post-, and longitudinal surveys. It was also seen that experiments where students actually touched and performed the experiments were perceived as more valuable to the students compared with experiments performed by the instructor.

E.J. Coyle, J.V. Krogmeier, R.T. Abler, A. Johnson, S. Marshall and B.E. Gilchrist, “The Vertically Integrated Projects (VIP) Program – Leveraging Faculty Research Interests to Transform Undergraduate STEM Education,” Proceedings of the Transforming Institutions: 21st Century Undergraduate STEM Education Conference, Indianapolis IN, Oct. 23-24, 2014.

Book Chapter adapted from article:

E.J. Coyle, J.V. Krogmeier, R.T. Abler, A. Johnson, S. Marshall and B.E. Gilchrist, “The Vertically Integrated Projects (VIP) Program: Leveraging Faculty Research Interests to Transform Undergraduate STEM Education,” Chapter in Transforming Institutions: Undergraduate STEM Education for the 21st Century, edited by G.C. Weaver, W.D. Burgess, A.L. Childress, and L. Slakey; Purdue University Press, West Lafayette, IN 2015; pp. 223-234.

The Vertically Integrated Projects (VIP) Program is an education program that operates in a research and development context.  Undergraduate students that join VIP teams earn academic credit for their participation in discovery/design/creative efforts that assist faculty and graduate students with research and development issues in their areas of technical expertise. The teams are:
  • multidisciplinary – drawing students from across campus;
  • vertically integrated – maintaining a mix of sophomores through PhD students each semester; and
  • long-term – each undergraduate student may participate in a project for up to three years.
The continuity, technical depth, and disciplinary breadth of these teams enable the completion of projects of significant benefit to  faculty members’ research programs.
 
We compare the implementations and success of VIP Programs at five different institutions by a variety of criteria, including: origin and type of implementation strategy; number of disciplines involved; type of institution; implementation in the curriculum; resources and support available; growth of the program; grading/assessment strategy and tools; relationship withother design programs; software tools for program administration; number of students and faculty involved; etc. While programmatic variations and support have a marked effect on the success of VIP at each institution, its implementation in the curriculum and the ease of scheduling and timetabling teams stand out as two of the most important issues for every VIP site. The common slow pace of curricular change and the variability of curricular implementations across disciplines and institutions, are two of the key issues being addressed by the VIP Consortium that has recently been formed. It will enable the development and sharing of ideas, processes, and software tools for improving, growing and evaluating VIP Programs at all Consortium sites. Its overall goal is systemic reform of STEM Education.
National Academy of Engineering. Infusing Real World Experiences into Engineering Education. Washington, DC: The National Academies Press, 2012 This report showcases 29 engineering programs at US colleges and universities that effectively incorporate real world experiences in their curriculum, and highlights best practices for schools seeking to create such programs. Best practices include incorporating multidisciplinary team-based projects into curricula to help students develop skills in decision making, leadership, written and oral communication, organization/time management, cultural awareness, and problem solving. The report identifies impediments to infusing real world experiences in engineering programs and suggests ideas for overcoming them. The most frequent obstacles cited are lack of funding and financial support, faculty workload concerns, and challenges encountered with partners. Case studies in the report compare anticipated versus actual program outcomes to demonstrate how each institution is improving the level of preparedness of its engineering students. The Real World Engineering Education committee received 95 nominations from accredited four-year undergraduate schools with engineering or engineering technology programs. Submissions were judged based on program creativity, innovation, attention to diversity (including geographic, institution, racial/ethnic, and gender), sustainability plan, assessment of student learning, level of real world experience, and anticipated versus actual outcomes.
N. Viljoen, “Managing for the Triple Bottom Line in Project-Based Learning," 42nd International Conference on Computers and Industrial Engineering, Cape Town, South Africa, July 16-18, 2012.

Project-based learning is a popular engineering education approach that involves at least three stakeholders–students, faculty and an external client. But more often than not, one or more of these parties have to compromise their goals in the interest of the learning experience. This discourages stakeholders and threatens the sustainability of project-based learning programs. This paper defines the objectives of the stakeholders that engage in project-based learning, defining the triple bottom line that a project-based learning experience should aim to fulfil if it wishes to be sustainable.

The iTransport team at the Georgia Institute of Technology is one of many Vertically Integrated Projects that seeks to implement meaningful technology applications for real life clients through a multidisciplinary, multi-ranked student group. The paper further presents a case study of the first four semesters of the iTransport team highlighting that expectation management, management of team dynamics and keeping the triple bottom line front-of-mind through good project management principles is essential to addressing the triple bottom line.

J. Melkers, A. Kiopa, R.T. Abler, E.J. Coyle, J.M. Ernst, J.V. Krogmeier, and A. Johnson, “The Social Web of Engineering Education: Knowledge Exchange in Integrated Project Teams," Proceedings of the 2012 ASEE Annual Conference and Exposition, San Antonio, TX, June 10-13, 2012. Engineering education is evolving to become an environment of project-based learning, research assistantships, and other mechanisms that approximate the research and collaborative aspects of true-to-life processes. From this diverse set of learning environments, students are expected to not only gain technical skills, but also social and group skills relevant to the realities of collaborative work in engineering. This expectation is in turn underscored by ABET accreditation standards, which extend beyond simply technical skills to include the development and learning of professional skills. In this paper, we ask: From an instructional perspective, how can learning outcomes be better observed so that faculty can provide appropriate guidance and occasional control? What are the sources of this diversity of learning within student groups? How do the ways that engineering students interact in team network environments matter for the skills that they develop through this experience? Scholars working in the science of learning argue that peer-relations form a social context of knowledge creation that constitutes a foundation for the development of team-skills. In this paper, we show how peer relations develop, and subsequently provide knowledge and learning resources within multi-ranked student teams over time. The data in this paper are based on a multi-year evaluation of the NSF-funded Vertically Integrated Projects (VIP) Program at two institutions. The VIP Program brings together graduate and undergraduate students to solve applied engineering problems. Results show different patterns of knowledge seeking and exchange behavior across student groups. These results show that technical knowledge sources are distinct from project management and related information needs. Most interestingly, results show that knowledge exchange does not maintain its hierarchy. Undergraduate students develop their own information communities within teams, including regarding technical information. These results have important implications for the management of teams that include a range of students and expertise.
R. Abler, E.J. Coyle, A. Kiopa, and J. Melkers, “Team-based Software/System Development in a Vertically Integrated, Project-Based Course," Proceedings of the 41'st Annual ASEE/IEEE Frontiers in Education Conference, Rapid City, SD, Oct. 12-15, 2011. We use per-student virtual machines to allow new students to configure servers, thus enabling them to develop an understanding of the complex eStadium system. The outcomes include: student learning as the per-student virtual machines progress into software development and production machines supporting the eStadium game-day environment; the teamwork and leadership skills that evolve as students progress from initial learning to leadership roles in the creation of sophisticated applications; guidelines for instructors mentoring students through the process of building and maintaining a working production system; and, parallels with best-practice software and system development in industry. The use of peer-evaluations and social-network studies enable us to determine how the students interact with and learn from each other across years (sophomores through seniors). This cross year, cross experience-level learning process is essential for maintaining the technical and team continuity of the project. It also prepares students in a very realistic way for the software-development process in industry.
M. Baxter, B. Byun, E.J. Coyle, T. Dang, T. Dwyer, I. Kim, C.-H. Lee, R. Llewallyn, and N. Sephus, “On Project-Based Learning through the Vertically Integrated Projects Program," Proceedings of the 41'st Annual ASEE/IEEE Frontiers in Education Conference, Rapid City, SD, Oct. 12-15, 2011. Georgia Tech's Colleges of Engineering and Computing initiated the Vertically Integrated Projects (VIP) program in January 2009. Undergraduate students that join VIP teams earn academic credit for participating in design efforts that assist faculty and graduate students with research and development issues in their technical areas. The teams are: multidisciplinary - drawing students from around the university; vertically-integrated - maintaining a mix of sophomores through PhD students each semester; and long-term - each undergraduate student may participate in a project for up to six semesters. We describe the Video and Image Annotation VIP (VIA-VIP) project, which provides undergraduates unique opportunities to learn and apply state-of-the-art video-mining algorithms by processing a large archive of football videos recorded from GT football games. Their results are documented. Based on their feedback we believe the VIA-VIP course is on track to meet the needs of undergraduates in areas they don't usually see in the traditional undergraduate classroom.
R. Abler, J.V. Krogmeier, A. Ault, J. Melkers, T. Clegg, and E.J. Coyle, “Enabling and Evaluating Collaboration of Distributed Teams with High Definition Collaboration Systems,” Proceedings of the 2010 ASEE Annual Conference and Exposition, Louisville, KY, June 20-23, 2010. The Vertically Integrated Projects (VIP) program creates and supports large-scale, long-term, vertically-integrated teams that pursue design projects embedded in the research efforts of faculty and their graduate students. The undergraduates on these teams earn academic credit for their participation in the projects and benefit from long-term mentorship by the faculty, graduate students, and more experienced undergraduates on their team. In this paper, we report on a unique opportunity for VIP teams at Purdue and Georgia Tech to collaborate on a common VIP project called eStadium. The goal of this project is research, design and deployment of applications related to the real-time delivery of multimedia content over wireless networks to fans' mobile devices in a stadium during football games. To help the teams collaborate to achieve this goal, we have deployed High-Definition Distributed Collaboration (HDDC) systems at Purdue and Georgia Tech. They support two-way, high-definition video links and shared computer applications that together significantly enhance the teams’ collaboration on the project. The VIP Program benefits from a multi-methodological and longitudinal evaluation of progress toward goals and VIP outcomes. The evaluation blends rich interview-based qualitative data with a detailed social network analysis of student-level collaborative interaction and outcomes. The approach draws from studies of scientific collaboration, student learning outcomes, and social network analysis. This paper presents baseline evaluation data on early learning outcomes, student expectations, and the structure and resources of the student VIP networks. The lessons learned from this initial round of assessments will be used to improve both VIP and the collaborative system.
E.J. Coyle, J.P. Allebach, and J. Garton Krueger, “The Vertically Integrated Projects (VIP) Program in ECE at Purdue: Fully Integrating Undergraduate Education and Graduate Research,” Proceedings of the 2006 ASEE Annual Conference and Exposition, Chicago, IL, June 18-21, 2006. The Vertically Integrated Projects (VIP) Program is an engineering education program that operates in a research and development context. Undergraduate students that join VIP teams earn academic credit for their participation in design efforts that assist faculty and graduate students with research and development issues in their areas of technical expertise. The teams are: multidisciplinary – drawing students from across engineering; vertically-integrated – maintaining a mix of sophomores through PhD students each semester; and long-term – each undergraduate student may participate in a project for up to seven semesters and each graduate student may participate for the duration of their graduate career. The continuity, technical depth, and disciplinary breadth of these teams enable the completion of projects of significant benefit to faculty members’ research programs.

.